蓝狮娱乐-蓝狮注册登录站

如果有一天当你的Redis 内存满了,该怎么办?

日期:2023-04-13 12:59 / 作者:佚名

我们知道redis是一个非常常用的内存型数据库,数据从内存中读取是它非常高效的原因之一,那么但是如果有一天,「redis分配的内存满了怎么办」?遇到这个面试题不要慌,这种问题我们分为两角度回答就可以:

这种方法很暴力,也很好用,我们直接通过增加redis的可用内存就可以了, 有两种方式

这种方法是立竿见影的,reids 内存总归受限于机器的内存,也不能无限制的增长,那么如果没有办法再增加 redis 的可用内存怎么办呢?

实际上Redis定义了「8种内存淘汰策略」用来处理redis内存满的情况:

这些内存淘汰策略都很好理解,我们着重讲解一下lru,lfu,ttl是怎么去实现的

lru是Least Recently Used的缩写,也就是「最近很少使用」,也可以理解成最久没有使用。最近刚刚使用过的,后面接着会用到的概率也就越大。由于内存是非常金贵的,导致我们可以存储在缓存当中的数据是有限的。比如说我们固定只能存储1w条,当内存满了之后,缓存每插入一条新数据,都要抛弃一条最长没有使用的旧数据。我们把上面的内容整理一下,可以得到几点要求:

所以我们要尽可能的保证查询效率很高,插入效率很高,我们知道如果只考虑查询效率,那么hash表可能就是最优的选择,如果只考虑插入效率,那么链表必定有它的一席之地。

但是这两种数据结构单独使用,都有它的弊端,那么说,有没有一种数据结构,既能够保证查询效率,又能够保证插入效率呢?于是 hash+链表这种结构出现了

hash表用来查询在链表中的数据位置,链表负责数据的插入 当新数据插入到链表头部时有两种情况;

这时双向链表的作用也提现出来了。能直接定位到父节点。这效率就很高了。而且由于双向链表有尾指针,所以剔除最后的尾节点也十分方便,快捷

LFU:Least Frequently Used,最不经常使用策略,在一段时间内,数据被「使用频次最少」的,优先被淘汰。最少使用(LFU)是一种用于管理计算机内存的缓存算法。主要是记录和追踪内存块的使用次数,当缓存已满并且需要更多空间时,系统将以最低内存块使用频率清除内存.采用LFU算法的最简单方法是为每个加载到缓存的块分配一个计数器。每次引用该块时,计数器将增加一。当缓存达到容量并有一个新的内存块等待插入时,系统将搜索计数器最低的块并将其从缓存中删除。

这里我们提出一种达到 O(1) 时间复杂度的 LFU 实现方案,它支持的操作包括插入、访问以及删除

如图:

由两个双向链表+哈希表组成,上方的双向链表用来计数,下方的双向链表用来记录存储的数据,该链表的头节点存储了数字,哈希表的value对象记录下方双向链表的数据 我们这里按照插入的流程走一遍:

这样当查找,插入时效率都为O(1)

redis针对TTL时间有专门的dict进行存储,就是redisDb当中的dict *expires字段,dict顾名思义就是一个hashtable,key为对应的rediskey,value为对应的TTL时间。?dict的数据结构中含有2个dictht对象,主要是为了解决hash冲突过程中重新hash数据使用。

TTL设置key过期时间的方法主要是下面4个:

expire expireat pexpire pexpireat

从实际设置过期时间的实现函数来看,相对时间的策略会有一个当前时间作为基准时间,绝对时间的策略会「以0作为一个基准时间」

整个过期时间最后都会换算到绝对时间进行存储,通过公式基准时间+过期时间来进行计算。?对于相对时间而言基准时间就是当前时间,对于绝对时间而言相对时间就是0。?中途考虑设置的过期时间是否已经过期,如果已经过期那么在master就会删除该数据并同步删除动作到slave。?正常的设置过期时间是通过setExpire方法保存到 dict *expires对象当中。

redis什么时候执行淘汰策略?

在redis种有三种删除的操作此策略

平台注册入口